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1 Introduction

Abstract

Cryptographic routines and algorithms often rely on randomness, which is

an essential fundament, especially in key-generation applications. This paper

discusses how pseudo and real random numbers may be generated and how

threatening unconcerness due to lack of entropy may seriously risk security.

1 Introduction

1.1 The need for randomness

The science of computation and computer programming defines a scholarship based

on absolute accuracy and precision. What results computers are expected to pro-

vide, is strongly constrained by a classified order of a finite set of instructions in

dependency on the applied architecture and computational platform.

This fact clearly represents the exigence and importance of algorithmic determinism,

where randomness is truly out of place. Moreover, randomness may not only be

handled as objectionable non-deterministic occurence but also as an hard-to-produce

scientific subject, where strictly deterministic algorithms should be able to produce

seemingly random data.

Nevertheless, randomness has proven to be very powerful in a wide range of appli-

cations, as according to [HL93], like in chaos theory, pattern recognition, quantum

mechanics and statistics. Futhermore, randomness constitutes the fundamental es-

sentials of security and secure communication in the broad scope of applications in

nowadays cryptography.

As particular example, the One-time-pad is the only known method of encipherment

which has been proven to be ultimately secure when total randomness is precondi-

tioned.

1.2 Formal definitions

When speaking about randomness, we commonly mean a sequence of independent

random numbers, where each number was obtained completely random and has

absolutely no correlation between any other numbers inside the sequence.
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1 Introduction

In computer science, we reduce the set of possible values for one digit to one and

zero, so let our alphabet A = {0, 1}. In an N -bit random number sequence, the

probability of the resulting value at any position n inside the bit string is exactly

1/|A| = 0.5 = 50%, completely indepedent of which digit we’re talking about.

Stongly related to the term of randomness, we’ll shortly discuss the forms of pre-

dictability. The importance of randomness is actually given by the fact, that true

random sequences are completely unpredictable, which is precisly what particular

fields of applications need for calculations.

As shown in [GNP06], a fully random process can be called unpredictable, but

an unpredictable process doesn’t mandatory has to be completely random. The

first implication should be considered as trivial; the non-existence of the reverse

implication may be shown by the following example: Let the numbers of a die be

represented in bit-streams, so the possible results of rolling a die can only be elements

of the set {001, 010, 011, 100, 101, 110}. Each time the die has been rolled, the result

is completely independent of all previous and subsequent rolls. Notwithstanding, the

consequential sequence of values is closely associated with a non-uniform distribution

of our co-domain (in other words, we will never ever get the die to result in a value

of the set {000, 111}).

Entropy Primiparously introduced by C. Shannon in 1948, entropy is defined as

the quantity of information within a given block of data, and can mathematically be

described as the ”negative logarithm of the probability of the process’s most likely

output” ([GNP06]).

Therefore, maximum entropy assures complete (uniformly distributed) randomness

and hence unpredictability. An interesting value is given by the entropy rate J :

J = −
n<|〈X〉|∑

n=0

(pxn log2 pxn)· | 〈X〉 |−1

providing the percentual average of unforeseeability per bit, taken from the bit-

stream 〈X〉 where pxn is the probability p of occurance of element n in stream x.
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2 Algebraical pseudo-randomness

1.3 Motivation for non-deterministic cryptographic appli-

cations

The one-time-pad is the one and only perfectly secure cryptographic protocol, which

implies that

1. (the shared secret is only known by trusted communication partners,)

2. the shared secret is truly random, and

3. every element of the sequence which defines the shared secret is only to be

used exactly once.

In every symmetric cryptographic algorithm we assume 1) as a prerequisite. The

weight of 2) and possible endangerments due to lack of randomness are discussed

later.

The secureness of one-time-pads deeply relies on 3), because every attempt of decod-

ing a ciphered bit-stream sequence will result in every possible plaintext of the length

|N |, containing all possible permutations of |N | values, as long as 3) is redeemed.

Another relevant field of activity in cryptography are stream ciphers, which basically

utilize an initial random (seed) value to iteratively construct an enormous amount

of pseudo-random successors of the chosen seed by algebraic and consequently fully

deterministic processes. Therefore, the security of the ciphered stream totally de-

pends on the randomness of the seed. Any possible influence which decreases the

entropy of the seed value will undoubtedly prune the number of sequences which are

to be examined against the ciphered stream when attacking via brute force methods.

2 Algebraical pseudo-randomness

2.1 Fully algorithmic generation of random sequences

2.1.1 Linear congruential generators

The matter of fact that an entirly deterministic process cannot produce random-

ness, forces us to survey mathematical approaches which result in pseudo-random
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2 Algebraical pseudo-randomness

sequences. In addition, those sequences are retrospectively to be testified to be

uniformly distributed.

One of the first efforts on producing random numbers are Linear Congruential Gen-

erators ([Knu98]), which commonly underlie a recursive definition:

〈Xn〉 := xn = (axn−1 + b) mod m

where m acts as module, a as multiplier, b as increment and n as counter variable.

xn is taken as the remainder mod m (which defines the maximal value + 1) and

represents the n-th element of the pseudo-random sequence. A linear congruential

sequence will always be liable to a maximum period φ < m+ 1 as a repeating cycle

of numbers, unattached to which seed number x0 has been set.

Let a = b = 3, and let m = 11, and let the initial value xn−1 be zero, then 〈Xn〉
obtains a maximum period of 5, by reason of 〈Xn〉 = 〈. . . 3, 1, 6, 10, 0 . . .〉.

Linear congruential generators, as well as quadratic and cubic congruential sequences

like

xn = (ax2
n−1 + bxn− 1 + c) mod m

or

xn = (ax3
n−1 + bx2

n−1 + cxn−1 + d) mod m

and even polynomial ones with and without unknown parameters have been proven

to be insecure due to predictability ([Sch05]) and therefore unusable for cryptogra-

phy.

2.1.2 Linear feedback shift registers

Still heavily in use for a rich spectrum of utilisation, Linear Feedback Shift Registers

(LFSR) incorporate a very useful alternative to getting uniformly distributed bit-

sequences.

A shift-register is used to represent a bit vector Xn = (xn, . . . , x1) which gets shifted

along the predefined direction (right, in our example) in conjunction with every in-

struction step, so that xn → xn−1, . . . , x2 → x1 and x1 of instruction step Xn−1

becomes the newest output bit of our pseudo-random stream, before executing

Xn−1+1 = Xn like shown in detail in [Ert03].
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2 Algebraical pseudo-randomness

The initial assignment setup of the register describes the sequence, we will henceforth

entitle as key. The feedback function is instantiated as composite configuration of

particular bits inside the register which are (in its most elementary specification)

associated by mutual exclusiveness, also known as XOR. The mapping of exclusively

disjuncted bits is called the tapping sequence.

LFSRs may produce sequences by a maximum period of 2n − 1 (omitting a key

holding only zeros). To force the creation of a maximum-period output sequence, the

tapping sequence has to be an irreducible primitive polynomial modulo 2, according

to [Sch05], where a rich list of such polynomials can be found.

2.1.3 Geffe Generators

In its simplest form, LFSRs can already be broken after 2n output bits. This fact

leads to more complicated structures like the Geffe-Generator, which consists of two

or three (N) LFSRs providing the input of a two-to-one multiplexer, and one LFSR

as multiplexer control unit which produces bits according to the following forumla:

b = (x1 ∧ x2)⊕ (¬x1 ∧ x3)

The conception of the Geffe-Generator makes sense, if

• N LFSRs are used with maximum periods, and

• the period-values of the LFSRs are coprime.

If the preceding conditions are given, the Geffe Generator will have a long period

and linear complexity.
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2 Algebraical pseudo-randomness

2.1.4 Advanced crypto-analysis of the Geffe Generator

Brute-forcing all possible key-values will result in a maximum of 2n, and an average

of 2n · 1
2

values which are to be tested.

As shown in [Luc05], there is a way to greatly decrease this number: If the keys are

processed in order of the probability they may occur:

• The first n1 bits of the stream S (the first LFSR) give the most probable

sequences for key candidates K∗ of the key K..

• Testify all possible keys K∗, beginning with Hamming-distance 1 of K∗, and

increase the number continuously.

• In average, the final key K has a Hamming-distance of n/4 of K∗.

• The number of steps may therefore be reduced to(
n1

0.75 · n1

)

If the secret key has a strength of 120 bit and is built upon 3 40-bit registers, we

have n1 = n2 = n3 = n4. Therefore we have a maximum number of 240 keys to be

tested, and an average of 239 keys. The key-reduction process now may decrease the

number of trials to (
40

30

)
=

40!

30! · 10!
≈ 229.7 ≈ 230

which means a reduction to 1/10000.

2.2 User-interaction driven generation of random sequences

As we have already seen, pure algebaric pseudo-random number generators can not

guarantee perfect security. Besides true unbiased random data sources, which are to

be discussed later, hybrid randomisation systems are commonly used for gathering

quite strong entropy.

A hybrid random sequence generator is classified by using raw data which is not

completely random, but quite non-traceable in combination with ordinary randomi-

sation algorithms and sustains upon
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2 Algebraical pseudo-randomness

1. direct user interaction,

2. meta data about captured user interaction,

3. various statistics, and

4. commonly used non-human-interface I/O-devices.

The gathering of data from those near-random sources results in a random number

pool, representing the main input conglomerate for further arithmetical operations

from which correlations are tried to be suppressed from the output stream.

Category 1) primarily means keystrokes and mouse movements. The user is forced to

provide random data via ordinary input devices. Because of the human understand-

ing and habits when using such devices, full entropy cannot be reached, altough the

unpredictability is better than using system internal values like process IDs. Nev-

ertheless, inter-keystroke timings are already used for biometric identification and

authentication software modules, clearly indicating a certain connection between the

person giving the input strokes and the resulting output stream.

Meta data about captured user interaction is mostly done with timing parameters

between keystrokes and mouse movements, as well as their derivation (acceleration);

these may also be combined with network and process statistics, but latter are not

to be used on their own.

Finally, also non-human-interface I/O-devices may be used for gathering entropy, like

microphones and webcams. The quality of possible randomness gathered from such

devices, strongly depends on the environment they are applied in. If a camera only

catches fairly still images of the user sitting in front of the computer, or even worse,

just poiting at a wall, it can be classified as mostly useless due to lack of entropy.

On the other hand, microphones may pick up interesting data flows, especially when

certain frequencies, which are liable to have a high rate of entropy, are filtered

[Ran95].

2.3 Case study: Analysis of Linux /dev/random

The Linux random number generator (LRNG) basically consists of three asyn-

chronous procedures ([?]):

• Entropy collection,
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2 Algebraical pseudo-randomness

• filling entropy-pools, and

• producing output if requested and updating the pools.

The Linux kernel gathers entropy by using information out of several internal re-

sources. Namely, these are mouse and keyboard activities, diso I/O-operations and

system interrupts. Every collected unit of information is carried by a timing vari-

able, respresenting a 32bit value of Jiffies (dependent on the kernel configuration, a

Jiffie may last from 1/250 - 1/1000 seconds).

The timings between events are used to calculate an estimation of the entropy which

is provided by the gathered information. Based on the result of this calculations,

more or less data may be added to the entropy pool.

While the /dev/random device produces strong randomness, its amount of entropy

is very limited and if there is no entropy available anymore, further requests of ran-

dom values are being blocked. On the other hand, /dev/urandom uses quite the

same entropy resources as /dev/random, but recreates randomness by hashing the

gathered entropy via the SHA-1 algorithm. Therefore, the latter is always capa-

ble of producing random numbers, but isn’t that secure than it’s limited pendant

/dev/random.

Linux in embedded devices When Linux is used in embedded devices like PDAs

or routers, most of the given resources may be unavailable to the system, because

neither harddisks, nor mice or keyboards are connected to the system. OpenWRT,

for example, is a Linux distribution for routers. The only available resource is given
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3 True unbiased bitstreams in ordinary computers

by network interrupts. Moreover, that current state of the random number generator

(which is normally stored within a file while the system is shut down, and used as a

seed at the next boot) often cannot be stored. Especially after hardware resets, the

amount of entropy is very rare.

If an attackers is able to capture all network traffic (e.g. from wireless routers) since

the device has been started up, it may be possible to reconstruct the initial state

of the device and hence allows recalculation of the seed values and further entropy

calculations.

When speaking about crypography, the entropy needed to produce SSL-certificates

implicitely also relies on the algorithms described above, and may hence be created

in an insecure environment with very low entropy, which largenes the contact surface

for attackers.

3 True unbiased bitstreams in ordinary comput-

ers

3.1 Quantum mechanical physical randomness

Atomic decay represents a good source for true randomness. Emissions, recognized

by a Geiger counter can be used to gather random bit sequences by measuring the

quantity of emissions within a fixed time-frame and saving the least significant bit

([Sch05]).

[SR07] exactly describes the construction of a true quantum random number genera-

tor, whose randomness relies on the ”quantum physical process of photonic emission

in semiconductors and subsequent detection of photoeletric effect”. The image be-

low shows a prototype of the generator, providing up to 12Mbit/s of random data,

transfered via USB 2.0.
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3 True unbiased bitstreams in ordinary computers

3.2 Randomness through ordinary disk drives

Firstly introduced on the 14th Annual International Cryptology Conference, even

ordinary hard-disk drives may offer true random data. According to [DIF94], several

tests have shown that rotational speed, disk spacing and cooling flow affect the disk

flow. The algorithm basically measures the access-times for reading single sectors on

the disk and uses the variation of these times as input source, which still deserves the

removal of correlations. The occasion why the resulting streams are supposed to be

random, is because the main reason for disk-jitter is found in natural air turbulences

inside the drive.

As shown in [ES00], Maxtor has developed a related attempt for using hard disks as

random source, by inspecting the magnetic readback signal amplitude of the servo

bursts inside the harddisk, as well as the quality of the data stream as seen by the

readback signal decoder (raw data), and reaches up to 835kbps.
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4 Exceptional cryptographic endangerments due to lacks of
entropy

3.3 Balancing asymmetric occurences

When a bit-stream has been collected, we have to focus on eliminating possibly

occurring asymmetric appearences. A very effective method is the Neumann-Filter,

which simply maps bit-pairs to either nothing (ε) or the most significant bit:

f =


00→ ε

11→ ε

01→ 0

10→ 1

Let p be the possibility of any bit x of the stream to be 1, then the possibility of

bit-pairs 01 or 10 is exactly p · (1− p). Therefore, the possibility of getting the value

1 after using the Neumann-filter is defined through

pn =
p · (1− p)
2p · (1− p) = 0.5

4 Exceptional cryptographic endangerments due

to lacks of entropy

The creation of useable random numbers is very important when used in crypto-

graphic concerns, since those values are commonly used to generate a shared secret.

Therefore, if the random stream can be reproduced, even the strongest cryptosystem

won’t increase security.

4.1 Early Netscape SSL implementations

Netscape’s implementation of the Secure Socket Layer (which offers strong cryptog-

raphy) in the Navigator-software originally only took three parameters to gather

entropy for key generation and exchange:

• system ID of the current process,

• system ID of the parent process, and

• the current time of the day.
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4 Exceptional cryptographic endangerments due to lacks of
entropy

The following code shows the main SSL routine of gaining entropy:

1 global variable seed;
2

3 RNG_CreateContext ()
4 (seconds , microseconds) = time of day; /* Time elapsed since 1970 */
5 pid = process ID; ppid = parent process ID;
6 a = mklcpr(microseconds );
7 b = mklcpr(pid + seconds + (ppid << 12));
8 seed = MD5(a, b);

Several security related papers have shown that this combination of pseudo-random

sources is breakable within under one minute ([Gut98]).

4.2 TCP/IP sequence number prediction

In a great paper from S. M. Bellovin [Bel89], a detailed description can be found

about how to predict TCP packet sequence numbers of a host without receiving any

respones during an attack on Berkeley systems. TCP uses stateful connection and

hence sequence numbers to assure correctness of the sequence. Both, server and

client, chose their own random values as initial sequence number θ, which is to be

acknoledged by the other partner:

1. C → S: SYN (θC)

2. S → C: SYN (θS), ACK (θC)

3. C → S: ACK (θS)

When the client IP address has been spoofed, the answer of the server will not

reach the sender of the packet, therefore the client basically won’t get θS and cannot

acknoledge this number.

Bellovin pointed out, that, on Berkeley systems, the sequence number is permanen-

tely incremented once a second by a constant amount; furthermore it is increased

by half of this amount everytime a connection is initiated, what levels the ground

for serious attacks by SYN flooding.
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5 Conclusion

4.3 Other Software vulnerabilities

Developers often rely on the randomisation algorithms provided by operating sytems

and/or software libraries on the one hand, and produce buggy code when using these

mechanisms on the other hand.

• Certain versions of the Layer 2 Tunneling Protocol Daemon (L2TPD, defined

in RFC 2661) fail to initialize the random number generator with a seed-value

before calling the rand() function, which is part of the ANSI C stdlib li-

brary. Behaviour-prediction and man-in-the-middle attacks have been noticed

(Bugtraq ID 5451).

• The Red Hat Linux mkpasswd tool originally claimed to use an own advanced

random number generator, but initiated the generator with only its own pro-

cess ID; only a very small set of possible passwords have been generated (Bug-

traq ID 2632).

• Recently discovered, the NetBSD operating system driver for specific Intel

hardware random number generators did not detect the hardware chipset cor-

rectly. Predictable keys are possibly being created. (Bugtraq ID 17496).

• Early version of the official Cisco VPN Client had a weak implementation of a

random number generator, which has also been used for creating TCP sequence

numbers and have therefore be vulnerable to man-in-the-middle attacks and

packet injection (Bugtraq ID 5653).

• The random number generator in Linux kernels 2.6 before 2.6.21.4 do not

proberly seed pools when there is not enough entropy available. Moreover, an

incorrect casting may force the random number generator to produce the same

values everytime after reboots on system without an entropy source (CVE-

2007-2453).

5 Conclusion

Random numbers are used in a broad range of applications, but only a few of them

may lead to such catastrophic results as when used within cryptography. Low-

entropy sources may probably result in predictiveness of the random bit stream,
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5 Conclusion

which turns out to be utterly devastating if cryptographic keys are generated from

these data flows.
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